
Secure Store &
Forward (SSF)

API Specifications

Version 1.0

Technical
Documentation

SAP AG
Neurottstraße 16

D-69190 Walldorf
Germany

Dr. J. Schneider
Michael Friedrich

Version 1.0
11.06.99

Copyright
©Copyright 1999 SAP AG. All rights reserved.

No part of this documentation may be reproduced or transmitted in any form or for any
purpose without the express permission of SAP AG.

SAP AG further does not warrant the accuracy or completeness of the information, text,
graphics, links or other items contained within these materials. SAP AG shall not be liable for
any special, indirect, incidental, or consequential damages, including without limitation, lost
revenues or lost profits, which may result from the use of these materials. The information in
this documentation is subject to change without notice and does not represent a commitment
on the part of SAP AG in the future.

Some software products marketed by SAP AG and its distributors contain proprietary software
components of other software vendors.

Microsoft®, WINDOWS®, NT® and EXCEL® and SQL-Server® are registered trademarks
of Microsoft Corporation.

IBM®, OS/2®, DB2/6000®, AIX®, OS/400® and AS/400® are a registered trademark of
IBM Corporation.

OSF/Motif® is a registered trademark of Open Software Foundation.

ORACLE® is a registered trademark of ORACLE Corporation, California, USA.

INFORMIX®-OnLine for SAP is a registered trademark of Informix Software Incorporated.

UNIX® and X/Open® are registered trademarks of SCO Santa Cruz Operation.

ADABAS® is a registered trademark of Software AG.

SAP®, R/2®, R/3®, RIVA®, ABAP®, SAPoffice®, SAPmail®, SAPaccess®, SAP-EDI®,
SAP ArchiveLink®, SAP EarlyWatch®, SAP Business Workflow®, R/3 Retail® are regis-
tered trademarks of SAP AG.

SAP AG assumes no responsibility for errors or omissions in these materials.

All rights reserved.

API Specifications Secure Store & Forward (SSF)

 SAP AG 1998 SAP Technical Documentation i

Contents

Copyright ... ii

1. SSF Goals and Requirements ..1

2. SSF Architecture and Application Scenarios................................3

2.1 “Pre-Phase”..3

2.2 “In-Phase”..3

2.3 SSF API Certification...4

2.4 SSF Standards..4

2.5 Application Scenarios...5

3. SSF Functions ..6

3.1 Overview ...6

3.2 Utilized Types and Codes...7
3.2.1 Types... 7

3.2.2 Return Codes ... 9

3.2.3 Character String Codes ...10

3.2.4 Signer/Recipient Information and Results Codes11

3.2.5 SSF Profile and Private Address Book...12

3.3 Utilized Input/Output Information Blocks.......................................15

3.4 Encoding and Decoding ...17

3.5 Functions ...19
3.5.1 SsfEncode...19

3.5.2 SsfDecode...20

3.5.3 SsfSign ...21

3.5.4 SsfAddSign...24

3.5.5 SsfVerify ..27

3.5.6 SsfEnvelope ..30

3.5.7 SsfDevelope..33

3.5.8 SsfDigest ..35

3.5.9 SsfVersion ..36

3.5.10 SsfQueryProperties ...37

3.5.11 SsfDELSsfOctetstring...38

Secure Store & Forward (SSF) API Specifications

ii SAP Technical Documentation  SAP AG 1998

4. Auxiliary Functions..39

4.1 Overview ...39

4.2 Utilized Types and Codes ...40
4.2.1 Types ...40

4.2.2 Return Codes ..40

4.3 Auxiliary Functions ..41
4.3.1 SsfNEWSigRcpSsfInfo...41

4.3.2 SsfINSSigRcpSsfInfo ...42

4.3.3 SsfDELSigRcpSsfInfo ..43

4.3.4 SsfDELSigRcpSsfInfoList ..44

4.3.5 SsfPRISigRcpSsfInfo..45

4.3.6 SsfPRISigRcpSsfInfoList..46

5. Bibliography...47

API Specifications Secure Store & Forward (SSF)

 SAP AG 1998 SAP Technical Documentation iii

Figures

Figure 1. Digital Signature ...2

Figure 2. Digital Envelope ...2

Figure 3. SSF Architecture...4

Tables

SSF Functions (Version 1)...6

SSF Return Codes ...9

Character string codes for formats ...10

Character string codes for hash algorithms ...10

Character string codes for symmetric encryption algorithms11

Integer codes for signer/recipient results ..12

SSF functions - input/output information ...18

SSF Auxiliary Functions (Version 1)..39

SSF Auxiliary Function Return Codes..40

Secure Store & Forward (SSF) API Specifications

iv SAP Technical Documentation  SAP AG 1998

Preface

This document contains the high-level specifications of the SSF interface for
“Secure Store & Forward” mechanisms with SAP R/3 (SSF API). This
mainly includes the use of digital signatures and encryption at the R/3
application level.

After introducing the goals of SSF and describing the SSF architecture, the
individual SSF functions will be described in a language-neutral way. The
high-level specifications are mapped to ABAP function modules, and to “C”
functions as low-level specifications (separate documents).

Disclaimer

This is the final version of the SSF API specifications, version 1.0.

Secure Store & Forward (SSF)

 SAP AG 1998 SAP Technical Documentation 1

1. SSF Goals and Requirements

The support provided by “Secure Store & Forward (SSF)” enables the
protection of R/3 data and documents when saved on data carriers and when
transmitted via insecure communication paths. To facilitate this, digital
signatures and encryption are utilized at the application level. In the process,
the data is saved regardless of the type of its contents, and regardless of the
selected transport procedure. The creation, sending, and receipt of the data
can occur asynchronously.

Various components currently contribute to the security of the SAP R/3
System. Authentication of users of the R/3 System is carried out by the
logon procedure (R/3 logon). The authorization of R/3 users to carry out
specific SAP transactions and access R/3 datasets occurs via the R/3
authorization concept and the associated access controls (“authority
check”).

With SNC (“Secure Network Communications”) support, security is
increased at the level of network communications. By authenticating end
systems and system processes in a distributed R/3 System, secure network
connections are guaranteed. Applying hash procedures and encrypting data
streams sent over network connections - such as between the SAPgui and the
application server - guarantees the integrity and confidentiality of the data
during an online session. Furthermore, securing RFC (“Remote Function
Call”) and SAProuter with SNC prevents unauthorized external access to
R/3 Systems. At the network level, these security mechanisms are
transparent to the R/3 applications. In addition, card readers and smartcards
can be used to authenticate R/3 users with SNC.

With the SSF (“Secure Store & Forward”) functions, security is achieved
at the R/3 application level. Independent data units can be secured even
outside the context of an existing communication link. For example, this
includes documents and datasets saved in the R/3 System (such as financial
data, planning data, personnel data, etc.), even outside of running
transactions. Moreover, the use of SSF is particularly advantageous when
data leaves the R/3 System for a time, in order to exchange it between people
and institutions - as is often the case for processing electronic orders,
purchase orders, deliveries, or payments.

With the SSF functions, R/3 data and documents are “wrapped” in secure
formats - the so-called “security wrapper” - before they are saved on data
carriers or transmitted via insecure communication links. A digital signature
ensures that the data is not falsified, that the sender (signatory) can be clearly
determined, and that proof of award of contract exists (see Figure 1). The
subsequently assigned digital envelope ensures that the contents of the data
are only visible to the intended recipient(s) (see Figure 2). As a result, no
security gaps arise, even if the data is temporarily stored during transport or
at its destination. These two principle mechanisms are using public-key
technology.

R/3 Security

SSF
Functions

3.2.1 Types Secure Store & Forward (SSF)

2 SAP Technical Documentation  SAP AG 1998

Cryptographic
Hash Algorithm

Message Digest

>= 128 bits

Signed
Message Digest

Signer’s
Private Key

Document/
Message

Document/
Message

Signed Data
Wrapper

Figure 1. Digital Signature

Protecting R/3 data and documents with SSF fulfills the following basic
security requirements:

• Integrity of data (protection from falsification)
• Confidentiality of data (protection from unauthorized viewing)
• Authenticity of the sender (protection from counterfeiters)
• Proof of award of contract (Non-repudiation)

In addition, the following SSF properties are also extremely relevant for
electronic transactions:

• SSF is asynchronous - i.e. creation, transmission, receipt, processing, and
confirmation of business transactions can occur as several independent
steps

• Independence from the transport method - various transport media and
procedures are possible (such as a public network, provider, online
service, online service, Internet, tapes, disks), as well as various
communication services and protocols (such as HTTP, FTP, e-mail, EDI).

These properties are retained even after the data transmission is complete, as
long as the data is saved in the secure format.

Encrypted
Message Key

Recipient’s
Public Key

Random
Message Key

Asymmetric
Encryption

Document/
Message

Encrypted
Document/
Message

Enveloped Data
Wrapper

Figure 2. Digital Envelope

SSF
Properties

API Specifications 2.1 “Pre-Phase”

 SAP AG 1998 SAP Technical Documentation 3

2. SSF Architecture and Application Scenarios

2.1 “Pre-Phase”

Before the actual use of the SSF functions, the infrastructure required to use
the public key technology must be set up in a preparatory phase (“pre-
phase”). This includes determining which organization acts as the
“Certification Authority (CA)”, which certifies the authenticity of Public
Keys for the involved parties. This role can initially be assumed by one or
more of the affected customers, banks, etc., or can be assumed by SAP. In
the future, there will be inspected, public certification points. The
preparatory phase also includes installing the security products, generating
keys, and distributing certificates to the involved partners. For a complete
public key infrastructure, the revocation of certificates by the CA via
publishing and distributing so-called „certificate revocation lists (CRLs)“
should also be defined.

2.2 “In-Phase”

The architecture and workflow during actual use of the SSF functions (“in-
phase”) are illustrated in Figure 3. The R/3 applications (FI, SD, etc.) access
the SSF functions using various ABAP function modules provided for the
“SSF Call Interface” by the Basis software.

The security aspects (such as digital signature, encryption) of the data are
passed on to the corresponding SSF ABAP function module, which in turn
calls the appropriate “C” functions (for the front end via RFC (“Remote
Function Call”)). The SSF RFC server program or the R/3 kernel calls the
appropriate “C” functions using the SSF API.

To enable use of the SSF API functions, a function library that provides the
“C” functions integrated through the SSF API is dynamically loaded at
runtime. The implementation through the “C” functions specified by the SSF
API establish the connection to the security product (“security toolkit”). In
the process, the specific API functions of the respective security product are
called. After the return from the RFC or the kernel, the secure data is passed
from the SSF ABAP function module back to the application.

This entire process is indicated with “Sign/Envelope” in Figure 3. To verify
secure data and make it readable again, the reverse process is applied
(“Develope/Verify” in Figure 3).

The SSF operations can be carried out at the application server and at the
front end. Whenever possible, the application server’s security toolkit is
used, e.g. to verify signatures or digitally sign data with the system’s private

Frontend and
Application
Server

3.2.1 Types Secure Store & Forward (SSF)

4 SAP Technical Documentation  SAP AG 1998

key. Frontend operations are required, when a user has to sign a document
and to decrypt documents encrypted with his public key.

...

B
a
s
i
s

R/3

Database

File System WAN/
Internet

HRFI SD

SSF Call Interface

SSF API

Toolkit API

SSF Function Modules (“ABAP”)

SSF Functions (“C”)

Security Toolkit

Sign..Envelope Develope..Verify

CO

RFC

RFC-Server Program

Figure 3. SSF Architecture

2.3 SSF API Certification

The function library which includes the implementation of the SSF API can
come from various security product vendors, which means that many
different security products can be used.

To guarantee proper interaction with the R/3 System, however, the security
product must be certified by SAP for use with SSF.

For complete information about the BC-SSF certification, see
http://www.sap.com/csp/scenarios (→ Business Technology). More
information, e.g. the SSF Test Plan, header files and a test tool, are available
there on request.

As of Release 4.5, R/3 is shipped with SAPSECULIB (SAP Security
Library) as the default SSF service provider. SAPSECULIB is a software
solution with functionality that is limited to digital signatures at the
application server. For support of crypto hardware (for example, smart
cards, crypto boxes, etc.) or digital envelopes, you need a SAP-certified
external security product.

2.4 SSF Standards

The format used for signed and/or encrypted data is PKCS#7 [1]. The use of
SSF functions applies X.509 [2] as the standard for “Public Key” certificates.
These standards form a foundation that is currently the most widespread

SAP Security
Library

API Specifications 2.5 Application Scenarios

 SAP AG 1998 SAP Technical Documentation 5

worldwide, while still maintaining maximum flexibility for future
enhancements.

2.5 Application Scenarios

The SSF functions can be applied in various scenarios for protecting data and
documents:

1. Clear-text data entered in the SAPgui is immediately transposed to the
secure format by the application, and is then saved in the R/3 database in
that secure format. When the data is required again, it is read from the R/3
database and then verified and/or decrypted by the SSF functions before
the actual use.

2. If necessary, the application can also save the data entered in the SAPgui
directly in the file system in the secure format. When the data is required
again, it is read from the file system and then verified and/or decrypted by
the SSF functions before the actual use.

3. The data from an R/3 transaction is initially stored in the various tables of
the R/3 System. In further transactions in the SAP workflow, the data is
then read from the R/3 database, a digital signature and/or encryption is
applied, and the data is saved again in the R/3 database in the secure
format.

4. Data is read from the R/3 database and prepared for external storage
and/or transport/transmission. To do this, the data is initially transformed
into the required external format and then secured with the SSF functions.
Once the data is available in the secure format, it can be safely saved to
disk or transmitted through insecure communication links, like the
Internet. The intended recipient can be another R/3 System, or a different
system that supports the secured format used.

5. Data is received in secure format from the Internet (or through another
method) and imported into the R/3 System. Note that the secure data
does not necessarily must have been generated with R/3 - it only needs to
be available in the secure format used. After decryption with the SSF
functions, the data is available in clear text. In addition, the digital
signature is verified as necessary.

3.2.1 Types Secure Store & Forward (SSF)

6 SAP Technical Documentation  SAP AG 1998

3. SSF Functions

3.1 Overview

In its first version, the SSF interface includes 17 functions, 11 functions
described in this chapter and six auxiliary functions as described in the next
chapter. A listing of the function names can be found in Table 1. The
functions are generally used in pairs: one function for “wrapping” the data
and/or documents, and a corresponding function for “unwrapping” them
from the secure format. The format itself is variable, and can be specified as a
parameter in any of the functions. Initially, however, only the PKCS#7 [1]
format is supported. Use of a different, unsupported format will result in the
issuing of an appropriate return code.

The SsfVersion function returns information on the current version of the
SSF API and of the underlying security product. With SsfQueryProperties,
further properties of the security toolkit can be queried.

The SsfEncode function transforms clear-text entries into a uniform,
encoded format. Under PKCS#7, this is an ASN.1 encoding that corresponds
to the ASN.1 data types defined in [1] and encoding in accordance with
ASN.1 encoding rules. This transforms the data into a binary format that is
suitable for transmission between computers (Octetstring). In PKCS#7, the
“Data” format is used. Please note that the data is not yet secured by digital
signatures or encryption/decryption. The Octetstring is decoded again into
the local representation on a given computer by the SsfDecode function. For
more information see paragraph 3.4.

The SsfSign function generates one or more digital signatures under the
input data. With PKCS#7, the “SignedData” format is used for this. The
SsfAddSign function is used to add several digital signatures in several steps
and at different times. It adds an additional signature to data that has already
been signed. SsfVerify is used to verify the digital signatures.

SsfEncode SsfDecode

SsfSign

SsfAddSign
SsfVerify

SsfEnvelope SsfDevelope

SsfDigest

SsfVersion SsfQueryProperties

SsfDELSsfOctetstring

Table 1. SSF Functions (Version 1)

API Specifications 3.2 Utilized Types and Codes

 SAP AG 1998 SAP Technical Documentation 7

The SsfEnvelope and SsfDevelope functions encrypt data for one or more
recipients and decrypt it for each recipient, respectively. With PKCS#7, the
“EnvelopedData” format is used for this.

Function SsfDigest is used to compute a hash value from the input data. In
PKCS#7, the hash value is returned in “DigestedData” format. SsfDigest is a
one-way function, and does not have a corresponding reverse function.

The SsfDELSsfOctetstring function deletes output data returned from calls
to the other SSF functions and frees the associated memory.

Note: The auxiliary functions described in chapter 4 are part of the SSF API.

3.2 Utilized Types and Codes

3.2.1 Types

The following data types are used for parameters and results of the SSF
functions. To simplify the description of the formal parameters in this
document, we use the informal name instead of their C type. The correct
type can be found in the C prototypes.

Character string
typedef char * SsfCharstring;

Binary string
typedef char * SsfOctetstring;

Whole number (always greater than or equal to 0 in this document)
typedef int SAP_INT;
typedef unsigned int SAP_UINT;
Note: It is assumed here, that the size of int is four bytes.

TRUE/FALSE
typedef enum { FALSE = 0, TRUE = 1 } SAP_BOOL;

Composite type with the components:

strSigRcpId Charstring
strSigRcpL Integer
strSigRcpReserved Charstring
strSigRcpReservedL Integer
strSigRcpProfile Charstring
strSigRcpProfileL Integer

Charstring

Octet String

Integer

Boolean

SigRcpSsf
Information

3.2.1 Types Secure Store & Forward (SSF)

8 SAP Technical Documentation  SAP AG 1998

strSigRcpPassword Charstring
strSigRcpPasswordL Integer
uResult Integer

This structure is always passed as pointer:
typedef SigRcpSsfInformation *PtrSigRcpSsfInformation;

Finite, non-recursive list with elements of the respective composite type
typedef struct SigRcpSsfInformationListStruct *
 SigRcpSsfInformationList;

Note: Output parameters are passed as a pointer to the respective element.

The following listing is an extract of the C include file that defines these
types:

/* SSF type for function return codes: SAPRETURN */
typedef int SAPRETURN;

/* SSF type for Characterstring names */
typedef char * SsfCharstring;

/* SSF type for Octetstring data */
typedef char * SsfOctetstring;

/* SSF type for Integer: SAP_INT */
typedef int SAP_INT;
typedef unsigned int SAP_UINT;

/* SSF type for Boolean */
typedef enum { FALSE = 0, TRUE = 1 } SAP_BOOL;

/*** Signer/Recipient Security Information types ***/

/* Security info of one signer/recipient */
typedef struct /* SigRcpSsfInformation */
{
 SsfCharstring strSigRcpId; /* name of signer/recipient */
 SAP_INT strSigRcpIdL; /* length of above */
 SsfCharstring strSigRcpReserved; /* reserved for future use */
 SAP_INT strSigRcpReservedL; /* length of above */
 SsfCharstring strSigRcpProfile; /* signer/recip sec profile */
 SAP_INT strSigRcpProfileL; /* length of above */
 SsfCharstring strSigRcpPassword; /* password signer/recipient*/
 SAP_INT strSigRcpPasswordL; /* length of above */
 SAP_UINT uResult; /* result of SSF operation */
} SigRcpSsfInformation;

/* Pointer to security info of one signer/recipient */
typedef SigRcpSsfInformation * PtrSigRcpSsfInformation;

/* List of signer security info */
typedef struct SigRcpSsfInformationListStruct *
 SigRcpSsfInformationList;

List of ...

API Specifications 3.2 Utilized Types and Codes

 SAP AG 1998 SAP Technical Documentation 9

/* List element of signer security info */
typedef struct SigRcpSsfInformationListStruct
{
 SigRcpSsfInformationList ptrNextSigRcp; /*next element*/
 PtrSigRcpSsfInformation ptrSigRcp; /*this element*/
} SigRcpSsfInformationListElement;

3.2.2 Return Codes

Following is the complete list of possible return codes of the SSF functions.
These return codes are an indication of the overall result of the SSF function.

ERRORS

SSF_API_OK (0) API call ended successfully, no error

SSF_API_NOSECTK (1) Could not find the security product
library (dynamic loading failed)

SSF_API_INVALID_FORMAT (2) Unknown or unsupported security
wrapper format

SSF_API_NODATA (3) Length of input data is 0 or input data
does not match signed data

SSF_API_NOMEMORY (4) Not enough dynamic memory
available for this operation

SSF_API_SIGNER_ERRORS (5) Error detected for one or more
signatories

SSF_API_NORESULTLISTMEMORY (6) Not enough dynamic memory
available for results list

SSF_API_UNKNOWN_PAB (7) Private address book not found

SSF_API_INVALID_PAB_PASSWORD (8) Password for private address book is
not valid

SSF_API_RECIPIENT_ERRORS (9) Errors were detected for one or more
recipients

SSF_API_INVALID_MDALG (10) Unknown or unsupported hash
algorithm

SSF_API_ENCODE_FAILED (11) ASN.1 encoding not possible

SSF_API_DECODE_FAILED (12) ASN.1 decoding not possible

SSF_API_UNKNOWN_SECTK_ERROR (13) Unknown or unspecified error in
security product

SSF_API_INVALID_SYMALG (14) Unknown or unsupported symmetric
encryption algorithm

Table 2. SSF Return Codes

3.2.3 Character String Codes Secure Store & Forward (SSF)

10 SAP Technical Documentation  SAP AG 1998

3.2.3 Character String Codes

Following are summary tables for valid character string codes used with the
SSF API.

Note: These parameters have the type string so that new entries (e.g.
algorithms) can be added without the need to change this specification. Thus,
new strings will be added in the future.

Furthermore, the supported codes depend on the used security product: Not
every security product must support all valid strings and new strings might
be added by security products. Nevertheless, a common subset of valid
strings should be supplied, see the recommendations.

The following are the security wrapper formats that are supported at the SSF
API. This may vary depending on the used security toolkit.

FORMAT

PKCS#7 [1] (required) “PKCS7”

Table 3. Character string codes for formats

The following are the hash algorithms that are supported at the SSF API.
This may vary depending on the used security toolkit.

HASH ALGORITHM

MD5 (required) “MD5”

SHA-1 (required) “SHA1”

MD2 “MD2”

MD4 “MD4”

RIPEMD-160 “RIPEMED160”

Table 4. Character string codes for hash algorithms

Format

Hash
Algorithms

API Specifications 3.2 Utilized Types and Codes

 SAP AG 1998 SAP Technical Documentation 11

The following are the symmetric encryption algorithms that are supported at
the SSF API. This may vary depending on the used security toolkit.

SYMMETRIC ENCRYPTION ALGORITHM

DES CBC (required) “DES-CBC”

Triple DES “TRIPLE-DES”

IDEA “IDEA”

Table 5. Character string codes for symmetric encryption algorithms

3.2.4 Signer/Recipient Information and Results Codes

The composite data type SigRcpSsfInformation contains fields that are
used for input and output. The first four fields provide information to identify
a signatory or recipient, respectively. For a signing operation, they are input
fields. When verifying digital signatures, they are output fields.

For the first four fields of the data type SigRcpSsfInformation the
character string type has been used. String length information is provided in
the associated length fields of type Integer. Please note that, although the
strings need not be zero-terminated and may contain any character, they are
customizable within the R/3 system and thus should be in human readable
form.

The strSigRcpId field contains the name of the signatory/recipient. Usually,
the strSigRcpId field will hold a name that is globally unique for the
signatory/recipient (e.g. X.500 Distinguished Name).

The strSigRcpProfile field contains the specification where to find the
security profile of the signatory/recipient. For example, this can be a
directory path or file name, database index or smartcard reader specification.
See section 3.2.5.

The strSigRcpPassword field provides a means of passing password
information for a signatory/recipient’s security profile with the SSF call. This
may be needed to open the security profile and access private key
information, in particular. The usage of this field is optional.

The fifth field uResult of the composite data type SigRcpSsfInformation
is used for output. It contains the result of the respective SSF function for
that signatory/recipient. Applications using SSF functions check the uResult
field in case the overall return code of an SSF call does not equal
SSF_API_OK (see Table 2). Possible values for the uResult field are listed
in the following table.

Symmetric
Encryption
Algorithms

ID

Profile

Password

uResult

3.2.5 SSF Profile and Private Address Book Secure Store & Forward (SSF)

12 SAP Technical Documentation  SAP AG 1998

uResult (in composite type SigRcpSsfInformation)

SSF_API_SIGNER_OK (0) Successful, no error for signatory

SSF_API_RECIPIENT_OK (0) Successful, no error for recipient

SSF_API_UNKNOWN_SIGNER (22) Signatory unknown

SSF_API_UNKNOWN_RECIPIENT (22) Recipient unknown

SSF_API_UNKNOWN_PROFILE (23) Security profile for signatory not found

SSF_API_INVALID_PROFILE (24) Security profile for signatory not applicable

SSF_API_INVALID_PASSWORD (25) Invalid password for signatory

SSF_API_NOCERTIFICATE (26) Certificate for signatory not available

SSF_API_SIGNER_NOT_OK (27) Digital signature could not be
provided/verified

SSF_API_RECIPIENT_NOT_OK (27) Encryption/decryption not possible for
recipient

SSF_API_UNDEFINED_RESULT (28) Result undefined

Table 6. Integer codes for signer/recipient results

3.2.5 SSF Profile and Private Address Book

To access the user’s private key or any public key, the SSF API uses SSF
Profiles and Private Address Books.

They are character strings that are customized within the R/3 system and
passed to the security toolkit. With this information (together with the
respective password), the security toolkit must be able to find the respective
private or public key. For example, this can be a directory path or file name,
database index or smartcard reader specification. The usage of this field is
optional and may vary between different security toolkits1.

Information for the security toolkit to determine how to find and use the
private key of a signatory/recipient. In addition, it is assumed that the
(default) cryptographic algorithm for signing and any other required
information should be derived from the security profile specification. This
provides the desired level of abstraction from details in the security
infrastructure as needed by the applications using SSF.

Information for the private address book in the system, consisting of a name
and password for opening, as well as the corresponding length specifications.
The private address book is used to verify signatures and to find the
recipient’s public keys when enveloping data. The private address book
typically contains information (and possibly certificates as well) on possible

1 We don’t make assumptions concerning the contents of this field; it is simply

passed to the security toolkit. However, note that this string should be in human
readable form, as it has to be entered into the R/3 database.

SSF Profile

Private
Address Book

API Specifications 3.2 Utilized Types and Codes

 SAP AG 1998 SAP Technical Documentation 13

recipients and senders of digitally signed and/or encrypted data. The
information contained therein enables direct or indirect access to public keys
for verifying digital signatures or encrypting data for specific recipients.
Private address books are generally used when no public directory
infrastructure (such as X.500) is available, or as a supplement to such an
infrastructure.

Note: Private address book and profile might be identical, although this is
not required. (Profile is used to access the private key, whereas the private
address book is used to retrieve or verify the public component of others.)

Note: If the security product has to distinguish private address book and
profile, different names should be chosen (e.g. by adding a prefix)

3.2.5.1 SSF profile and private address books for application servers

When installing profiles and private address books for R/3 systems (e.g. to
verify the users’ signatures or to create system signatures) one should keep
in mind that most R/3 systems consist of multiple application servers:

• Every application server must have access to the private and public keys
(see next section ‘Passwords’ as well).

• As the profile and PAB information is identical for all application servers,
each application server’s security toolkit must be able to handle the same
information. Thus, (absolute) filenames are very dangerous as this can
lead to problems when using different platforms (e.g. Windows and
Unix). (Note that the same problem arises at the front end when users
use multiple front ends to create digital signatures.)

3.2.5.2 Passwords

There are two possible locations where the security toolkit can be used:
Either at the front end or at the application server. For those two situations,
there are different requirements to protect the profile and PAB.

On the front end, the security toolkit is used interactively. Thus, the
password protecting the profile or PAB can be entered by the user.

Note: Currently, the password is prompted by R/3. Depending on the
security toolkit used, there’s the possibility that the password can be
prompted by the toolkit itself (optionally showing the to be signed data), in
future versions. See next section.

On the application server, the security toolkit is used as a service. Therefore,
it isn’t possible to ask for a password. Thus, the password passed to the
security toolkit is left blank and should be ignored.2 Instead, it is up to the
security toolkit to limit the access to the profile and PAB. This can be
realized with credentials. They can be created either when the security toolkit

2 Otherwise it would be necessary to store the password in the database

Front end

Application
Server

3.2.5 SSF Profile and Private Address Book Secure Store & Forward (SSF)

14 SAP Technical Documentation  SAP AG 1998

is installed or each time the application server is started, depending on the
customer’s needs and security policy.

3.2.5.3 Password Policies

The security toolkit is responsible for assuring the security of profiles and
PABs. Security policies for password limitations (e.g. minimum length),
password aging, account locking and logging of the successful and/or false
attempts to open the profile, should be defined and controlled by the security
toolkit. If necessary, the security toolkit can interact with the user (e.g. when
the user has to change his password), see next section.

Some security toolkits have a single sign-on, where you only have to enter
the password the first time you access the private key. While this feature
might be useful for encryption (depending on the chosen security policy), we
do not recommend it for digital signatures. Digital signatures should only be
created if the user explicitly authorizes the security toolkit to create a
signature by entering the password. Especially when the security toolkits
supports SNC (Secure Network Communication) as well, these two
shouldn’t be mixed.

3.2.5.4 Password prompt by the security toolkit

By default, the password is prompted by R/3. Depending on the security
toolkit used, there’s the possibility that the password can be prompted by the
toolkit itself (optionally showing the to be signed data).

Note: Currently, this feature isn’t available with all R/3 applications; some of
them will always prompt and supply a password.

This can be enabled by returning a value of ‘1’ or ‘X’ for
SsfQueryProperties(“SSF_POPUPS”,10,NULL,0) . If this property isn’t
available, this feature is automatically disabled.

A value of ‘X’ indicates that the security toolkit supports popups (with the
capability to show the to be signed text). If ‘1’ is returned, only the password
popup is available.

In these cases, the security toolkit must be prepared to receive the password
‘!’ (either for the profile or for the PAB) indicating that it has to prompt for
the password. (This exclamation-mark may be followed by up to two
characters to specify the kind of popup. Currently, no special popup types
are defined.)

Note: This limits the range of valid passwords. However, passwords starting
with ‘!’ aren’t valid passwords within R/3 systems and the maximum length
(3) of these ‘special’ passwords is very short.

Note: For empty passwords, no popup should be shown. Return an
INVALID_PASSWORD error, if the profile or PAB cannot be accessed
without password.

Password
aging and user
locking

Password
caching and
SNC

Password
popups

API Specifications 3.3 Utilized Input/Output Information Blocks

 SAP AG 1998 SAP Technical Documentation 15

3.3 Utilized Input/Output Information Blocks

Here’s an overview of the parameters used by the SSF API. For an exact
description, see the individual function description.

INPUT Parameters:

strFormat (Charstring)

A character string with the ID of the required source/target security wrapper
format of the SSF function (see Table 3).

bIncCerts (Boolean)

bUseCerts (Boolean)

Indicates whether certificates (containing the signer’s public key) are to be
included in the security wrapper data when digital signatures are created or
whether the certificates included in the security wrapper data are to be used
when verifying digital signatures. A value of “TRUE” means “include/use”, a
value of “FALSE” means “do not include/do not use”.

bDetached (Boolean)

Specifies whether the digital signature or the hash is to be generated
“detached”, that is without the data (TRUE), or with the data (FALSE)
included in the signed data (digested data) wrapper.

ostrInputData, ostrInputDataL (Octet string, Integer)

A binary string with the data for handling and a length specification for the
binary string itself. For most of the functions, this data has to be encoded fist.
See SsfEncode and SsfDecode.

ostrInputData, ostrInputDataL (Octet string, Integer)

A binary string with the data to compare and a length specification for the
binary string itself. This data is needed for verification of “detached” digital
signatures.

(Charstring, Integer)

Name of the hash algorithm to be applied and the corresponding length
specification (see Table 4). This is used both for SsfDigest (where the hash
is calculated) and SsfSign (SsfAddSign).

Format

Contained
Certificates

Signature and
Hash Only

Input data

Comparison
Data

Hash
Algorithm

3.2.5 SSF Profile and Private Address Book Secure Store & Forward (SSF)

16 SAP Technical Documentation  SAP AG 1998

(Charstring, Integer)

Name of the symmetric encryption algorithm to be applied for message
encryption and the corresponding length specification (see Table 6).
Symmetric encryption is applied to the contents of enveloped data using a
newly generated message key. The message key is encrypted using the public
keys of the intended recipients. The private/public key mechanisms and
actual key pairs needed for the SSF operations are located by the security
product using the profile information passed for signatories and recipients.

IN/OUT Parameters:

(List of SigRcpSsfInformation , used in SsfSign)

A list of signers. See next item Signer.

(SigRcpSsfInformation , used in SsfAddSign)

Identification of the signatory, the security profile to be applied for that
signatory, and a password for opening the security profile for accessing the
signatory’s security information. In addition, the uResult field returns the
result of the SSF function for the signatory (see Table 6). For more
information, see section 3.2.4.

(List of SigRcpSsfInformation , used in SsfVerify)

Identification of the signatory. For the verification of digital signatures, the
security profile field contains additional attributes, such as signing time. The
uResult field returns the result of the SSF function for the respective
signatory (see Table 6).

(List of SigRcpSsfInformation , used in SsfEnvelope)

A list of recipients. For each recipient: information to identify the recipient.
The security product uses this information to search for the public key (in the
given private address book). The security profile field and the password field
must be empty. In addition, the uResult field returns the result of the SSF
function for the respective recipient (see Table 6).

(SigRcpSsfInformation , used in SsfDevelope)

Information for a recipient - e.g. information to identify the recipient, the
security profile to be used for this recipient and the password to be used for
opening the security profile. The respective security product uses this
information to access the private key for decryption. In addition, the
uResult field returns the result of the SSF function for the recipient (see
Table 6).

Symmetric
Encryption
Algorithm

Signer List

Signer

Signer Result
List

Recipient List

Recipient

API Specifications 3.4 Encoding and Decoding

 SAP AG 1998 SAP Technical Documentation 17

(Charstring, Integer, Charstring, Integer, used in SsfVerify and SsfEnvelope)

Information for the private address book in the system, consisting of a name
and password for opening, as well as the corresponding length specifications.

OUT Parameters:

(Integer)

Specification of the general result of an SSF function (in addition to the
output parameters). See Table 2.

(Octetstring, Integer)

A binary string with the processed data (actual result) and a length
specification for the binary string. This string must be freed with
SsfDELSsfOctetstring.

3.4 Encoding and Decoding

All binary input data that is processed by SsfSign and SsfEnvelope has to
be converted to an internal format with SsfEncode, first. Correspondingly,
the output data returned by SsfVerify and SsfDevelope has to be
converted back to the original data with SsfDecode.

Therefore, data processing looks like this:

1. SsfEncode the original data

2. SsfSign, SsfAddSign, SsfEnvelope (you can use the output of these
functions as new input for the next functions as their output is encoded).

3. …

4. SsfDevelope and SsfVerify (according to step 2, reverse order)

5. SsfDecode to get back the initial data from step 1.

The encoded data returned by SsfEncode isn’t used directly by any caller of
the SSF API. Thus, there’s no predefined format: Any toolkit provider is free
to choose an appropriate format. (It is even possible that SsfEncode and
SsfDecode don’t modify the data.)

Note: For PKCS7, we recommend using PKCS7 plain data.

Remark: This has been introduced so that the sequence SsfSign followed
by SsfEnvelope can distinguish the data returned by SsfSign from plain
input data.

Private
Address Book

Return Code

Output Data

3.2.5 SSF Profile and Private Address Book Secure Store & Forward (SSF)

18 SAP Technical Documentation  SAP AG 1998

Ssf

En

code

Ssf

De

code

Ssf

Sign

Ssf

Add

Sign

Ssf

Verify

Ssf

Enve

lope

Ssf

Deve

lope

Ssf

Di

gest

Ssf

Ver

sion

Ssf

Query

Props

IN

Format X X X X X X X X

include/use

certificates
X X X

detached X X

Input data X X X X X X X X

Compare data X X

Private

address book
X X

Hash alg. X X X

Symmetric

algorithm
X

INOUT

Signer X

Signer list X

Recipient X

Recipient list X

OUT

Signer result

list
X

Return code X X X X X X X X X X

Output data X X X X X X X X X X

Table 7. SSF functions - input/output information

API Specifications 3.5.1 SsfEncode

 SAP AG 1998 SAP Technical Documentation 19

3.5 Functions

The following sections describe the SSF functions.

3.5.1 SsfEncode

SsfEncode With this function, input data is transformed from the local
representation into a uniformly encoded format. The data is not
secured by digital signatures and/or encryption.

In PKCS#7, this is an ASN.1 encoding that corresponds to the
ASN.1 data types defined in [1] and encoding in accordance with
ASN.1 Basic Encoding Rules. This transforms the data into a
binary format that is suitable for transmission between computers
(Octetstring). In PKCS#7, the “Data” format is used.

The SsfDecode function is used to decode the string.

IN

strFormat (Charstring) Target format

strFormatL (Integer) Length of strFormat

ostrInputData (Octet string) Input data in uncoded format

ostrInputDataL (Integer) Length of ostrInputData

OUT

OstrEncodedData (Octet string) Output data (input data in encoded format). This
string must be freed with SsfDelSsfOctetstring.

ostrEncodedDataL (Integer) Length of ostrEncodedData

ERRORS

SSF_API_OK (0) API call ended successfully, no error

SSF_API_NOSECTK (1) Could not find the security product
library (dynamic loading failed)

SSF_API_INVALID_FORMAT (2) Unknown or unsupported security
wrapper format

SSF_API_NODATA (3) Length of input data is 0

SSF_API_NOMEMORY (4) Not enough dynamic memory
available for this operation

SSF_API_ENCODE_FAILED (11) ASN.1 encoding not possible

SSF_API_UNKNOWN_SECTK_ERROR (13) Unknown or unspecified error in
security product

3.5.2 SsfDecode Secure Store & Forward (SSF)

20 SAP Technical Documentation  SAP AG 1998

3.5.2 SsfDecode

SsfDecode This function is used to decode the encoded data - that is, to
transform it back to the local representation.

In PKCS#7, this is an ASN.1 decoding that corresponds to the
ASN.1 data types defined in [1] and in accordance with ASN.1
Basic Encoding Rules. The input data must be available in
encoded PKCS#7 “Data” format.

The SsfEncode function is used to encode the data.

IN

strFormat (Charstring) Source format

strFormatL (Integer) Length of strFormat

ostrEncodedData (Octet string) Input data in encoded format

ostrEncodedDataL (Integer) Length of ostrEncodedData

OUT

ostrOutputData (Octet string) Output data (input data in uncoded format). This
string must be freed with SsfDelSsfOctetString.

ostrOutputDataL (Integer) Length of ostrOutputData

ERRORS

SSF_API_OK (0) API call ended successfully, no error

SSF_API_NOSECTK (1) Could not find the security product
library (dynamic loading failed)

SSF_API_INVALID_FORMAT (2) Unknown or unsupported security
wrapper format

SSF_API_NODATA (3) Length of input data is 0

SSF_API_NOMEMORY (4) Not enough dynamic memory
available for this operation

SSF_API_DECODE_FAILED (12) ASN.1 decoding not possible

SSF_API_UNKNOWN_SECTK_ERROR (13) Unknown or unspecified error in
security product

API Specifications 3.5.3 SsfSign

 SAP AG 1998 SAP Technical Documentation 21

3.5.3 SsfSign

SsfSign This function is used to digitally sign the encoded input data.

In PKCS#7, the encoded “SignedData” format is returned.

The SsfVerify function is used to verify the digital signatures.

Comments:

• Multiple signatories are supported. The result is only generated
when all signatories are known and the security information of
all signatories can be located and used. In this case (success
case), ostrSignedData refers to the encoded result string with
all digital signatures. SignerList contains all signatories with
the result “OK”.

• In an error case, ostrSignedData has value NULL and
ostrSignedDataL the value 0. SignerList contains
information on both the valid signatories and the invalid
signatories.

• Sign must check that the given StrSigRcpId is correct (i.e.
matches the ID specified with StrSigRcpProfile); return
uResult SSF_API_UNKNOWN_SIGNER otherwise. Don’t simply
use the key specified by StrSigRcpProfile.

• Each digital signature includes a time stamp indicating when
the digital signature was created, which is also protected by
the digital signature. With the PKCS#7 format the
„SigningTime“ attribute defined in PKCS#9 is to be added as
an authenticated attribute.

IN

strFormat (Charstring) Target format

strFormatL (Integer) Length of strFormat

strHashalg (Charstring) Target hash algorithm to be used

strHashalgL (Integer) Length of strHashalg

bIncCerts (Boolean) Include certificates with the signed data (TRUE)
or do not include certificates in the signed data

bDetached (Boolean) Generate signature without input data contained
in the signed data (TRUE) or with input data
contained in the signed data (FALSE)

ostrInputData (Octetstring) Input data (encoded with SsfEncode)

ostrInputDataL (Integer) Length of ostrInputData

3.5.3 SsfSign Secure Store & Forward (SSF)

22 SAP Technical Documentation  SAP AG 1998

INOUT (All parameters are input, uresult is set as output)

SignerList (List of SigRcpSsfInformation)

StrSigRcpId (Charstring) Identification (name) of signatory

StrSigRcpIdL (Integer) Length of strSignerId

StrSigRcpReserved (Charstring) Not used, must be NULL

StrSigRcpReservedL (Integer) 0

StrSigRcpProfile (Charstring) Identification of security profile for strSignerId

StrSigRcpProfileL (Integer) Length of strSignerProfile

StrSigRcpPassword (Charstring) Password of signatory

StrSigRcpPasswordL (Integer) Length of strSignerPassword

Uresult (Integer) Signer result code

SSF_API_SIGNER_OK (0) Valid signature
SSF_API_UNKNOWN_SIGNER (22) Signatory not found
SSF_API_UNKNOWN_PROFILE (23) Security profile unknown
SSF_API_INVALID_PROFILE (24) Security profile not applicable
SSF_API_INVALID_PASSWORD (25) Password not valid
SSF_API_NOCERTIFICATE (26) Certificate not found
SSF_API_SIGNER_NOT_OK (27) Signature not valid
SSF_API_UNDEFINED_RESULT (28) Result not defined

DERIVED (from Profile) • Signatories’ private keys
• Signatories’ certificates
• Signatories’ Public Key algorithms
• Signatories’ Message Digest algorithm

OUT

ostrSignedData (Octet string) Output data (signed input data in encoded
format). This string must be freed with
SsfDelSsfOctetString.

ostrSignedDataL (Integer) Length of ostrSignedData

API Specifications 3.5.3 SsfSign

 SAP AG 1998 SAP Technical Documentation 23

ERRORS

SSF_API_OK (0) API call ended successfully, no error

SSF_API_NOSECTK (1) Could not find the security product
library (dynamic loading failed)

SSF_API_INVALID_FORMAT (2) Unknown or unsupported security
wrapper format

SSF_API_NODATA (3) Length of input data is 0

SSF_API_NOMEMORY (4) Not enough dynamic memory
available for this operation

SSF_API_SIGNER_ERRORS (5) Error detected for one or more
signatories

SSF_API_INVALID_MDALG (10) Unknown or unsupported hash
algorithm

SSF_API_ENCODE_FAILED (11) ASN.1 encoding not possible

SSF_API_DECODE_FAILED (12) ASN.1 decoding not possible

SSF_API_UNKNOWN_SECTK_ERROR (13) Unknown or unspecified error in
security product

3.5.4 SsfAddSign Secure Store & Forward (SSF)

24 SAP Technical Documentation  SAP AG 1998

3.5.4 SsfAddSign

SsfAddSign This function is used to add an additional digital signature to input
data that has already been digitally signed with SsfSign.

In PKCS#7, the encoded “SignedData” format is expected and
returned.

The verification of digital signatures is performed using the
SsfVerify function.

Comments:

• One additional signatory is supported. The result is only
generated when the signatory is known and the security
information of this signatory can be located and used. In this
case (success case), ostrUpdatedSignedData refers to the
encoded result string with all digital signatures. SignerResult
contains the result “OK” for the specified signatory.

• In an error case, ostrUpdatedSignedData has value NULL, and
ostrUpdatedSignedDataL has value 0. SignerResult contains
error information for the specified signatory.

• Sign must check that the given StrSigRcpId is correct (i.e.
matches the ID specified with StrSigRcpProfile); return
uResult SSF_API_UNKNOWN_SIGNER otherwise. Don’t simply
use the key specified by StrSigRcpProfile.

• The digital signature includes a time stamp indicating when the
digital signature was created, which is also protected by the
digital signature. With the PKCS#7 format the „SigningTime“
attribute defined in PKCS#9 is to be added as an
authenticated attribute.

• In case the input signed data was generated without the signed
data included (detached digital signature) the data that was
signed has to be supplied in the ostrInputData parameter. If
the input signed data contains the data and ostrInputData also
contains data, the two datasets have to be equal. If not, the
function returns an error (SSF_API_NODATA).

• Most of the parameters have to be identical to a former call to
SsfSign or SsfAddSign.

API Specifications 3.5.4 SsfAddSign

 SAP AG 1998 SAP Technical Documentation 25

IN

StrFormat (Charstring) Source/target format

StrFormatL (Integer) Length of strFormat

StrHashalg (Charstring) Target hash algorithm to be applied

StrHashalgL (Integer) Length of strHashalg

BincCerts (Boolean) Include certificate with the updated signed data
(TRUE) or do not include certificate with the
updated signed data (FALSE)

OstrSignedData (Octet string) Input data in encoded format as returned by a
former call to SsfSign or SsfAddSign

OstrSignedDataL (Integer) Length of ostrSignedData

OstrInputData (Octet string) Data to sign (encoded with SsfEncode). May be
omitted if the signed data is included in
OstrSignedData (i.e. no detached signature).

OstrInputDataL (Integer) Length of data to sign

INOUT (All parameters are input, uresult is set as output)

Signer (SigRcpSsfInformation)

strSigRcpId (Charstring) Identification (name) of signatory

strSigRcpIdL (Integer) Length of strSignerId

StrSigRcpReserved (Charstring) Not used, must be NULL

StrSigRcpReservedL (Integer) 0

strSigRcpProfile (Charstring) Identification of security profile for strSignerId

strSigRcpProfileL (Integer) Length of strSignerProfile

strSigRcpPassword (Charstring) Password of signatory

strSigRcpPasswordL (Integer) Length of strSignerPassword

uResult (Integer) Signer result code

SSF_API_SIGNER_OK (0) Valid signature
SSF_API_UNKNOWN_SIGNER (22) Signatory not found
SSF_API_UNKNOWN_PROFILE (23) Security profile unknown
SSF_API_INVALID_PROFILE (24) Security profile not applicable
SSF_API_INVALID_PASSWORD (25) Password not valid
SSF_API_NOCERTIFICATE (26) Certificate not found
SSF_API_SIGNER_NOT_OK (27) Signature not valid.
SSF_API_UNDEFINED_RESULT (28) Result not defined

DERIVED (from Profile) • Signatory’s private key
• Signatory’s certificates
• Signatory’s Public Key algorithm
• Signatory’s Message Digest algorithm

3.5.4 SsfAddSign Secure Store & Forward (SSF)

26 SAP Technical Documentation  SAP AG 1998

OUT

ostrUpdatedSignedData (Octet string) Output data (input data - with an added signature
- in encoded format)

This string must be freed with
SsfDelSsfOctetString.

ostrUpdatedSignedDataL (Integer) Length of ostrUpdatedSignedData

ERRORS

SSF_API_OK (0) API call ended successfully, no error

SSF_API_NOSECTK (1) Could not find the security product
library (dynamic loading failed)

SSF_API_INVALID_FORMAT (2) Unknown or unsupported security
wrapper format

SSF_API_NODATA (3) Length of input data is 0 or input data
does not match signed data

SSF_API_NOMEMORY (4) Not enough dynamic memory
available for this operation

SSF_API_SIGNER_ERRORS (5) Error detected for signatory

SSF_API_INVALID_MDALG (10) Unknown or unsupported hash
algorithm

SSF_API_ENCODE_FAILED (11) ASN.1 encoding not possible

SSF_API_DECODE_FAILED (12) ASN.1 decoding not possible

SSF_API_UNKNOWN_SECTK_ERROR (13) Unknown or unspecified error in
security product

API Specifications 3.5.5 SsfVerify

 SAP AG 1998 SAP Technical Documentation 27

3.5.5 SsfVerify

SsfVerify This function is used to verify the digital signatures of the input
data. Because multiple signatories are possible, a list is returned
with the results as output parameters. In addition, the signed data
is returned.

In PKCS#7, the encoded “SignedData” format is the required
input format.

The digital signature is generated using the SsfSign function.

Comments:

• In case digital signatures were generated as detached
signatures the input data parameter has to point to the data
that was signed. If the input data parameter is not NULL and
the digital signature is not a detached signature the two
datasets are compared for equality and SSF_API_NODATA is
returned if they are different.

• The output data (i.e. the data that has been signed) must be
returned even if an error occurred (especially if the signature
couldn’t be verified).

• Please note the special return code SSF_API_UNKNOWN_-
SIGNER that should be used if the signature was successfully
verified with an included certificate but the validity of that
certificate couldn’t been verified (either because it is self-
signed or issued by an unknown CA)

• The included (or retrieved) certificate should be returned in the
field strSigRcpPassword of the SignerResultList. If the
certificate isn’t available as much information as possible (e.g.
of the ToBeSigned part of the certificate) should be returned.

IN

StrFormat (Charstring) Source format

StrFormatL (Integer) Length of strFormat

bUseCerts (Boolean) Use included certificates (TRUE) or not (FALSE).
In most cases, TRUE should be passed.

OstrSignedData (Octet string) Input data in encoded format

OstrSignedDataL (Integer) Length of ostrSignedData

OstrInputData (Octet string) Comparison data (encoded with SsfEncode) -
only required if OstrSignedData has been created
detached.

OstrInputDataL (Integer) Length of comparison data

strPab (Charstring) Identification of private address book

strPabL (Integer) Length of strPab

strPabPassword (Charstring) Password for private address book

strPabPasswordL (Integer) Length of strPabPasswordL

3.5.5 SsfVerify Secure Store & Forward (SSF)

28 SAP Technical Documentation  SAP AG 1998

DERIVED • Signatories’ certificates (from PAB)
• Message Digest algorithms (from input data)
• Public Key algorithms (from input data)

OUT

SignerResultList (List of SigRcpSsfInformation)

strSigRcpId (Charstring) Identification (X.500 distinguished name) of
signatory

If the name is not available (e.g. if the certificate
isn’t available) return “issuer-name/No-
serialnumber”: CN=CA, OU=SSF-TEST,
O=SAP-AG, C=DE/No-2). uResult mustn’t be
SSF_API_OK, then, use SSF_API_NO-
CERTIFICATE.

strSigRcpIdL (Integer) Length of strSignerId

StrSigRcpReserved (Charstring) Not used, set to NULL and ignore

StrSigRcpReservedL (Integer) 0

strSigRcpProfile (Charstring) Timestamp when the digital signature was
created. The format is:

“SigningTime= human readable form (UTCTime:
utctime)”

Example: “SigningTime= Mon Jul 13
10:14:11 1998 (UTCTime:
980713081411Z)“.

Note: Additionally, multiple signed attributes
might be returned. Separate them by a 0-
character (\0), prefix them with
“attributename= “ and assure that the first
attribute is the signing time.

strSigRcpProfileL (Integer) Length of strSignerProfile

strSigRcpPassword (Charstring) Certificate of Signer (ASN1 encoded), if available.

If the certificate isn’t available, provide as much
information as possible (of the ToBeSigned part)
and encode it with a dummy signature of length 0.

strSigRcpPasswordL (Integer) Length of strSignerPassword

uResult (Integer) Signer result code

SSF_API_SIGNER_OK (0) Valid signature
SSF_API_UNKNOWN_SIGNER (22) Signatory not found

Signature has been verified with the user supplied certificate, but it is
either self-signed or not issued by a trusted CA.

SSF_API_NOCERTIFICATE (26) Certificate not found.
Certificate couldn’t be retrieved and the signature hasn’t been checked

SSF_API_SIGNER_NOT_OK (27) Signature not valid
SSF_API_UNDEFINED_RESULT (28) Result not defined

ostrOutputData (Octet string) Output data (the signed data). This string must be
freed with SsfDelSsfOctetString.

ostrOutputDataL (Integer) Length of ostrOutputData

API Specifications 3.5.5 SsfVerify

 SAP AG 1998 SAP Technical Documentation 29

ERRORS

SSF_API_OK (0) API call ended successfully, no error
(i.e. all signatures were successfully
verified; otherwise return SSF_API_-
SIGNER_ERRORS)

SSF_API_NOSECTK (1) Could not find the security product
library (dynamic loading failed)

SSF_API_INVALID_FORMAT (2) Unknown or unsupported security
wrapper format

SSF_API_NODATA (3) Length of input data is 0 or does not
match signed data

SSF_API_NOMEMORY (4) Not enough dynamic memory
available for this operation

SSF_API_SIGNER_ERRORS (5) Error detected for one or more
signatories

SSF_API_NORESULTLISTMEMORY (6) Not enough dynamic memory
available for results list

SSF_API_UNKNOWN_PAB (7) Private address book not found

SSF_API_INVALID_PAB_PASSWORD (8) Password for private address book is
not valid

SSF_API_ENCODE_FAILED (11) ASN.1 encoding not possible

SSF_API_DECODE_FAILED (12) ASN.1 decoding not possible

SSF_API_UNKNOWN_SECTK_ERROR (13) Unknown or unspecified error in
security product

3.5.6 SsfEnvelope Secure Store & Forward (SSF)

30 SAP Technical Documentation  SAP AG 1998

3.5.6 SsfEnvelope

SsfEnvelope This function is used to encrypt (“wrap”) input data for one or
more recipients.

In PKCS#7, the encoded “EnvelopedData” format is used.

Decryption (“unwrapping”) of the data is performed using the
SsfDevelope function.

Comments:

• Multiple recipients are supported. The result is only generated
when all the recipients are known, and the security information
of all recipients can be located and used. In this case (success
case), ostrEnvelopedData refers to the encoded result string
with all recipient information. RecipientList contains all the
recipients with the result OK.

• In an error case, ostrEnvelopedData has value NULL, and
ostrEnvelopedDataL has value 0. RecipientList contains
information about both the valid and invalid recipients.

IN

strFormat (Charstring) Target format

strFormatL (Integer) Length of strFormat

strSymEncr (Charstring) Target symmetric encryption algorithm

strSymEncrL (Integer) Length of strSymEncr

ostrInputData (Octet string) Input data (encoded with SsfEncode)

ostrInputDataL (Integer) Length of ostrInputData

strPab (Charstring) Identification of private address book

strPabL (Integer) Length of strPab

strPabPassword (Charstring) Password for private address book

strPabPasswordL (Integer) Length of strPabPasswordL

API Specifications 3.5.6 SsfEnvelope

 SAP AG 1998 SAP Technical Documentation 31

INOUT (All parameters are input, uResult is set as output)

RecipientList (List of SigRcpSsfInformation)

strSigRcpId (Charstring) Identification (name) of recipient.

strSigRcpIdL (Integer) Length of strSigRcpId

StrSigRcpReserved (Charstring) Not used yet, NULL

StrSigRcpReservedL (Integer) 0

StrSigRcpProfile (Charstring) Not used yet, NULL

StrSigRcpProfileL (Integer) 0

StrSigRcpPassword (Charstring) Not used yet, NULL

StrSigRcpPasswordL (Integer) 0

uResult (Integer) Recipient result code

SSF_API_RECIPIENT_OK (0) Recipient OK
SSF_API_UNKNOWN_RECIPIENT(22) Recipient not found

invalid RcpId (cf. error code 26)
SSF_API_NOCERTIFICATE (26) Certificate (private key) not found
SSF_API_RECIPIENT_NOT_OK (27) Encryption not possible for recipient
SSF_API_UNDEFINED_RESULT (28) Result not defined

DERIVED (from PAB) • Recipients’ public keys
• Recipients’ Public Key algorithms

OUT

ostrEnvelopedData (Octet string) Output data (input data encrypted for the given
recipients in encoded format). This string must be
freed with SsfDelSsfOctetString.

ostrEnvelopedDataL (Integer) Length of ostrEnvelopedData

3.5.6 SsfEnvelope Secure Store & Forward (SSF)

32 SAP Technical Documentation  SAP AG 1998

ERRORS

SSF_API_OK (0) API call ended successfully, no error

SSF_API_NOSECTK (1) Could not find the security product
library (dynamic loading failed)

SSF_API_INVALID_FORMAT (2) Unknown or unsupported security
wrapper format

SSF_API_NODATA (3) Length of input data is 0

SSF_API_NOMEMORY (4) Not enough dynamic memory
available for this operation

SSF_API_UNKNOWN_PAB (7) Private address book not found

SSF_API_RECIPIENT_ERRORS (9) Errors were detected for one or more
recipients

SSF_API_ENCODE_FAILED (11) ASN.1 encoding not possible

SSF_API_DECODE_FAILED (12) ASN.1 decoding not possible

SSF_API_UNKNOWN_SECTK_ERROR (13) Unknown or unspecified error in
security product

SSF_API_INVALID_SYMALG (14) Unknown or unsupported symmetric
encryption algorithm

API Specifications 3.5.7 SsfDevelope

 SAP AG 1998 SAP Technical Documentation 33

3.5.7 SsfDevelope

SsfDevelope This function is used to decrypt (“unwrap”) input data for one
recipient.

In PKCS#7, the encoded “EnvelopedData” format is expected.
The decrypted contents are returned.

The data is encrypted (“wrapped”) using the SsfEnvelope
function.

Comments:

• A recipient is specified for which decryption is to be performed.
The result is only generated when the recipient is known, and
the security information for that user can be located and used.
In this case (success case), ostrOutputData refers to the
decrypted result string. Recipient contains the result “OK” for
the specified recipient.

• In an error case, ostrOutputData has value NULL, and
ostrOutputDataL has value 0. Recipient contains error
information for the specified recipient.

IN

strFormat (Charstring) Source format

strFormatL (Integer) Length of strFormat

ostrEnvelopedData (Octet string) Input data in encoded format

ostrEnvelopedDataL (Integer) Length of ostrEnvelopedData

INOUT (All parameters are input, uResult is set as output)

Recipient (SigRcpSsfInformation)

strSigRcpId (Charstring) Identification (name) of recipient

strSigRcpIdL (Integer) Length of strRecipientId

StrSigRcpReserved (Charstring) Not used yet, NULL

StrSigRcpReservedL (Integer) 0

strSigRcpProfile (Charstring) Identification of security profile for strRecipientId

strSigRcpProfileL (Integer) Length of strRecipientProfile

strSigRcpPassword (Charstring) Password for recipient’s security information

strSigRcpPasswordL (Integer) Length of strSigRcpPassword

uResult (Integer) Recipient result code

See next page…

3.5.7 SsfDevelope Secure Store & Forward (SSF)

34 SAP Technical Documentation  SAP AG 1998

uResult (Integer) Recipient result code

SSF_API_RECIPIENT_OK (0) Recipient OK
SSF_API_UNKNOWN_RECIPIENT(22) Recipient not found

(Id doesn’t match profile)
SSF_API_UNKNOWN_PROFILE (23) Security profile unknown
SSF_API_INVALID_PROFILE (24) Security profile not applicable
SSF_API_INVALID_PASSWORD (25) Password not valid
SSF_API_NOCERTIFICATE (26) Certificate not found
SSF_API_RECIPIENT_NOT_OK (27) Decryption failed for recipient
SSF_API_UNDEFINED_RESULT (28) Result not defined

DERIVED • Recipient’s private key (from Profile)
• Recipient’s Public Key algorithm (from input data)

OUT

ostrOutputData (Octet string) Output data (input data decrypted for the
recipient). This string must be freed with
SsfDelSsfOctetString.

ostrOutputDataL (Integer) Length of ostrOutputData

ERRORS

SSF_API_OK (0) API call ended successfully, no error

SSF_API_NOSECTK (1) Could not find the security product
library (dynamic loading failed)

SSF_API_INVALID_FORMAT (2) Unknown or unsupported security
wrapper format

SSF_API_NODATA (3) Length of input data is 0

SSF_API_NOMEMORY (4) Not enough dynamic memory
available for this operation

SSF_API_RECIPIENT_ERRORS (9) Errors were detected for recipient

SSF_API_ENCODE_FAILED (11) ASN.1 encoding not possible

SSF_API_DECODE_FAILED (12) ASN.1 decoding not possible

SSF_API_UNKNOWN_SECTK_ERROR (13) Unknown or unspecified error in
security product

SSF_API_INVALID_SYMALG (14) Unknown or unsupported symmetric
encryption algorithm

API Specifications 3.5.8 SsfDigest

 SAP AG 1998 SAP Technical Documentation 35

3.5.8 SsfDigest

SsfDigest This function is used to calculate a hash value for the input data.

In PKCS#7, the encoded “DigestedData” format is returned.

IN

strFormat (Charstring) Target format

strFormatL (Integer) Length of strFormat

bDetached (Boolean) Return hash value without the input data included
(TRUE) or with the input data included (FALSE)

ostrInputData (Octet string) Input data (encoded with SsfEncode)

ostrInputDataL (Integer) Length of ostrDigestedData

strHashalg (Charstring) Target hash algorithm

strHashalgL (Integer) Length of strHashalg

OUT

ostrDigestedData (Octet string) Output data (hash value in requested format).
This string must be freed with
SsfDelSsfOctetString.

ostrDigestedDataL (Integer) Length of ostrDigestedData

ERRORS

SSF_API_OK (0) API call ended successfully, no error

SSF_API_NOSECTK (1) Could not find the security product
library (dynamic loading failed)

SSF_API_INVALID_FORMAT (2) Unknown or unsupported security
wrapper format

SSF_API_NODATA (3) Length of input data is 0

SSF_API_NOMEMORY (4) Not enough dynamic memory
available for this operation

SSF_API_INVALID_MDALG (10) Unknown or unsupported hash
algorithm

SSF_API_ENCODE_FAILED (11) ASN.1 encoding not possible

SSF_API_DECODE_FAILED (12) ASN.1 decoding not possible

SSF_API_UNKNOWN_SECTK_ERROR (13) Unknown or unspecified error in
security product

3.5.9 SsfVersion Secure Store & Forward (SSF)

36 SAP Technical Documentation  SAP AG 1998

3.5.9 SsfVersion

SsfVersion This function returns information on the version of the SSF API
and the security product used.

The information should be in human readable form and look like:

SSFLIB Version 1.46 ; more information

Comments:

• Replace SSFLIB by the name of your security toolkit.

• The major version number must be 1 for this version of the
SSF API, the minor number(s) can be chosen freely.

OUT

OstrOutputData (Octet string) Output data (contains version information). This
string must be freed with SsfDelSsfOctetString.

OstrOutputDataL (Integer) Length of ostrOutputData

ERRORS

SSF_API_OK (0) API call ended successfully, no error

SSF_API_NOSECTK (1) Could not find the security product
library (dynamic loading failed)

SSF_API_NOMEMORY (4) Not enough dynamic memory
available for this operation

SSF_API_UNKNOWN_SECTK_ERROR (13) Unknown or unspecified error in
security product

API Specifications 3.5.10 SsfQueryProperties

 SAP AG 1998 SAP Technical Documentation 37

3.5.10 SsfQueryProperties

SsfQueryProperties This function returns information on various properties of the SSF
API and the security product used. Multiple entries are separated
by a semicolon ‘;’.

Currently, the following properties are defined:

PROPERTIES List of supported properties (don’t include
PROPERTIES itself!)

Example: FORMATS;HASHALGS;ENCRALGS

FORMATS List of supported formats

HASHALGS List of supported hash algorithms

ENCRALGS List of supported symmetric encryption algorithms

SSF_POPUPS (optional) Security toolkit supports (password)
popups, see section 3.2.5.3

IN

strProperty (Charstring) Name of the property

strPropertyL (Integer) Length of strProperty

strArgument (Charstring) (optional) parameter used with some properties.

strArgumentL (Integer) Length of strArgument

OUT

OstrOutputData (Octet string) Output data (property information). This string
must be freed with SsfDelSsfOctetString.

OstrOutputDataL (Integer) Length of ostrOutputData

ERRORS

SSF_API_OK (0) API call ended successfully, no error

SSF_API_NOSECTK (1) Could not find the security product
library (dynamic loading failed)

SSF_API_NODATA (3) strProperty is no legal property for this
security product.

SSF_API_NOMEMORY (4) Not enough dynamic memory
available for this operation

SSF_API_UNKNOWN_SECTK_ERROR (13) Unknown or unspecified error in
security product

3.5.11 SsfDELSsfOctetstring Secure Store & Forward (SSF)

38 SAP Technical Documentation  SAP AG 1998

3.5.11 SsfDELSsfOctetstring

SsfDELSsfOctetstring With this function, output data from a previous call to an SSF
function (e.g. SsfSign, SsfVerify, …) is deleted and the
associated memory is freed.

Comments:

• The parameters are pointer to the respective data, see the
C-prototype.

• The parameter ostrToBeDeleted is set to NULL and
ostrToBeDeletedL is set to 0.

• It is save to call this function multiple times, i.e. when
ostrToBeDeleted is NULL nothing is done.

INOUT

OstrToBeDeleted (SsfCharstring) data to be deleted

OstrToBeDeletedL (Integer) Length of ostrToBeDeleted

ERRORS

SSF_AUX_OK (0) API call ended successfully, no error

API Specifications 3.5.11 SsfDELSsfOctetstring

 SAP AG 1998 SAP Technical Documentation 39

4. Auxiliary Functions

4.1 Overview

In order to provide the required information for parameters at the SSF API
for the SSF functions described in chapter 3 several auxiliary functions are
helpful. These functions deal with the creation and deletion of lists of signer
and recipient information and external representation of signer and recipient
information.3

The auxiliary functions required in conjunction with the SSF functions are
described in this chapter. Their realization is part of the SSF API.

The SsfNEWSigRcpSsfInfo function creates a new and initialized
signer/recipient information data structure and returns a reference to the new
structure.

The SsfDELSigRcpSsfInfo function deletes a signer/recipient information
data structure and frees the associated memory.

The SsfINSSigRcpSsfInfo function inserts a signer/recipient information
data structure into a list of signer/recipient information data structures and
returns a reference to the updated list.

The SsfDELSigRcpSsfInfoList function deletes a list of signer/recipient
information data structures and frees the associated memory.

The SsfPRISigRcpSsfInfo function prints the formatted information from a
signer/recipient information data structure into a string.

The SsfPRISigRcpSsfInfoList function prints the formatted information
from a list of signer/recipient information data structures into a string.

3 They are required as allocation and freeing of memory has to be done both by the

security library. To simplify work, we have provided a default implementation.

SsfNEWSigRcpSsfInfo SsfDELSigRcpSsfInfo

SsfINSSigRcpInfo SsfDELSigRcpSsfInfoList

SsfPRISigRcpSsfInfo SsfPRISigRcpSsfInfoList

Table 8. SSF Auxiliary Functions (Version 1)

4.2.1 Types Secure Store & Forward (SSF)

40 SAP Technical Documentation  SAP AG 1998

4.2 Utilized Types and Codes

4.2.1 Types

The data types used by the SSF auxiliary functions are identical to those of
the SSF functions, see chapter 3.2.1.

4.2.2 Return Codes

Following is the complete list of possible return codes of the SSF auxiliary
functions.

ERRORS

SSF_AUX_OK (0) API call ended successfully, no error

SSF_AUX_NOMEMORY (51) Not enough dynamic memory
available for this operation

SSF_AUX_NOSIGRCPID (52) Signer/recipient id is empty.

SSF_AUX_NOSIGRCPINFO (53) Signer/recipient information is empty.

SSF_AUX_NOSIGRCPINFOLIST (54) Signer/recipient information list is
empty.

Table 9. SSF Auxiliary Function Return Codes

API Specifications 4.3.1 SsfNEWSigRcpSsfInfo

 SAP AG 1998 SAP Technical Documentation 41

4.3 Auxiliary Functions

The following sections describe the SSF auxiliary functions.

4.3.1 SsfNEWSigRcpSsfInfo

SsfNEWSigRcpSsfInfo With this function, a new signer/recipient information data
structure is created and initialized with the given input values.
The input values are copied into the new structure and thus can
be freed or reused after a successful call of this function.

IN

strSigRcpId (Charstring) signer/recipient id

strSigRcpIdL (Integer) Length of strSigRcpId

StrSigRcpReserved (Charstring) Not used, must be NULL (be prepared to handle a
string, here)

StrSigRcpReservedL (Integer) 0

strSigRcpProfile (Charstring) signer/recipient security profile

strSigRcpProfileL (Integer) Length of strSigRcpProfile

strSigRcpPassword (Charstring) signer/recipient profile password

strSigRcpPasswordL (Integer) Length of strSigRcpPasword

uResult (Integer) signer/recipient result code

OUT

ptrSigRcpSsfInfo (SigRcpSsfInformation)

The created data structure. Free this with either
SsfDELSigRcpSsfInfo or SsfDELSigRcpSsf-
InfoList (if it has been inserted in a list).

ERRORS

SSF_AUX_OK (0) API call ended successfully, no error

SSF_AUX_NOMEMORY (51) Not enough dynamic memory
available for this operation

SSF_AUX_NOSIGRCPID (52) Signer/recipient id is empty.

4.3.2 SsfINSSigRcpSsfInfo Secure Store & Forward (SSF)

42 SAP Technical Documentation  SAP AG 1998

4.3.2 SsfINSSigRcpSsfInfo

SsfINSSigRcpSsfInfo With this function, a signer/recipient information data structure is
inserted at the end of a signer/recipient information list (may be
empty).

IN

PtrSigRcpSsfInfo (SigRcpSsfInformation)

INOUT

SigRcpSsfInfoList (List of SigRcpSsfInformation)

A pointer to the list. Free the inserted
signer/recipient information data structures and
the list with SsfDELSigRcpSsfInfoList.

ERRORS

SSF_AUX_OK (0) API call ended successfully, no error

SSF_AUX_NOMEMORY (51) Not enough dynamic memory
available for this operation

SSF_AUX_NOSIGRCPINFO (53) Signer/recipient information is empty.

API Specifications 4.3.3 SsfDELSigRcpSsfInfo

 SAP AG 1998 SAP Technical Documentation 43

4.3.3 SsfDELSigRcpSsfInfo

SsfDELSigRcpSsfInfo With this function, a signer/recipient information data structure
that has been created with SsfNEWSigRcpSsfInfo is deleted and
the associated memory is freed.

• The parameter ptrSigRcpSsfInfo is set to NULL.

INOUT

ptrSigRcpSsfInfo (SigRcpSsfInformation)

ERRORS

SSF_AUX_OK (0) API call ended successfully, no error

SSF_AUX_NOSIGRCPINFO (53) Signer/recipient information is empty.

4.3.4 SsfDELSigRcpSsfInfoList Secure Store & Forward (SSF)

44 SAP Technical Documentation  SAP AG 1998

4.3.4 SsfDELSigRcpSsfInfoList

SsfDELSigRcpSsfInfoList With this function, a list of signer/recipient information data
structure is deleted and associated memory is freed.

• The parameter sigRcpSsfInfoList is set to NULL.

• The elements of the list are freed with
SsfDELSigRcpSsfInfo by this routine, so this mustn’t be
done explicitly.

INOUT

SigRcpSsfInfoList (List of SigRcpSsfInformation) A pointer to the list.

ERRORS

SSF_AUX_OK (0) API call ended successfully, no error

SSF_AUX_NOSIGRCPINFOLIST (54) Signer/recipient information list is
empty.

API Specifications 4.3.5 SsfPRISigRcpSsfInfo

 SAP AG 1998 SAP Technical Documentation 45

4.3.5 SsfPRISigRcpSsfInfo

SsfPRISigRcpSsfInfo With this function, a signer/recipient information data structure is
printed formatted into a string.

IN

ptrSigRcpSsfInfo (SigRcpSsfInformation)

OUT

OstrOutputData (Octet string) Output data (contains signer/recipient
information). This string must be freed with
SsfDelSsfOctetString.

OstrOutputDataL (Integer) Length of ostrOutputData

ERRORS

SSF_AUX_OK (0) API call ended successfully, no error

SSF_AUX_NOMEMORY (51) Not enough dynamic memory
available for this operation

SSF_AUX_NOSIGRCPINFO (53) Signer/recipient information is empty.

Note: This function isn’t used any more (as of R/3 release 4.6). For compatibility reasons,
this function should be defined and exported. It is ok to always return error code 51. (This
function was used when writing trace files.)

4.3.6 SsfPRISigRcpSsfInfoList Secure Store & Forward (SSF)

46 SAP Technical Documentation  SAP AG 1998

4.3.6 SsfPRISigRcpSsfInfoList

SsfPRISigRcpSsfInfoList With this function, a list of signer/recipient information data
structure is printed formatted into a string.

IN

SigRcpSsfInfoList (List of SigRcpSsfInformation)

OUT

OstrOutputData (Octet string) Output data (contains signer/recipient
information). This string must be freed with
SsfDelSsfOctetString.

OstrOutputDataL (Integer) Length of ostrOutputData

ERRORS

SSF_AUX_OK (0) API call ended successfully, no error

SSF_AUX_NOMEMORY (51) Not enough dynamic memory
available for this operation

SSF_AUX_NOSIGRCPINFOLIST (54) Signer/recipient information list is
empty.

Note: This function isn’t used any more (as of R/3 release 4.6). For compatibility reasons,
this function should be defined and exported. It is ok to always return error code 51. (This
function was used when writing trace files.)

API Specifications 4.3.6 SsfPRISigRcpSsfInfoList

 SAP AG 1998 SAP Technical Documentation 47

5. Bibliography

RSA Laboratories, “PKCS #7: Cryptographic Message Syntax Standard”,
November 1993

ITU Recommendation X.509, „The Directory - Authentication Framework“

[1]

[2]

cpSsfInfoList Secure Store & Forward (SSF)

SAP Technical Documentation  SAP AG 1998

